

4th MEETING ON INNOVATIVE IMMUNOTHERAPIES FOR LYMPHOID MALIGNANCIES

Presidents

Paolo Corradini

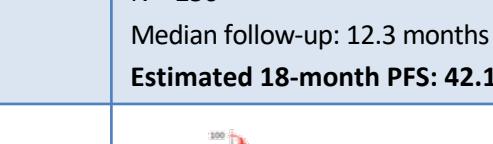
Marco Ruella

Pier Luigi Zinzani

Clinical Results CAR-T for DLBCL: What's Next?

Stephen J. Schuster, M.D.

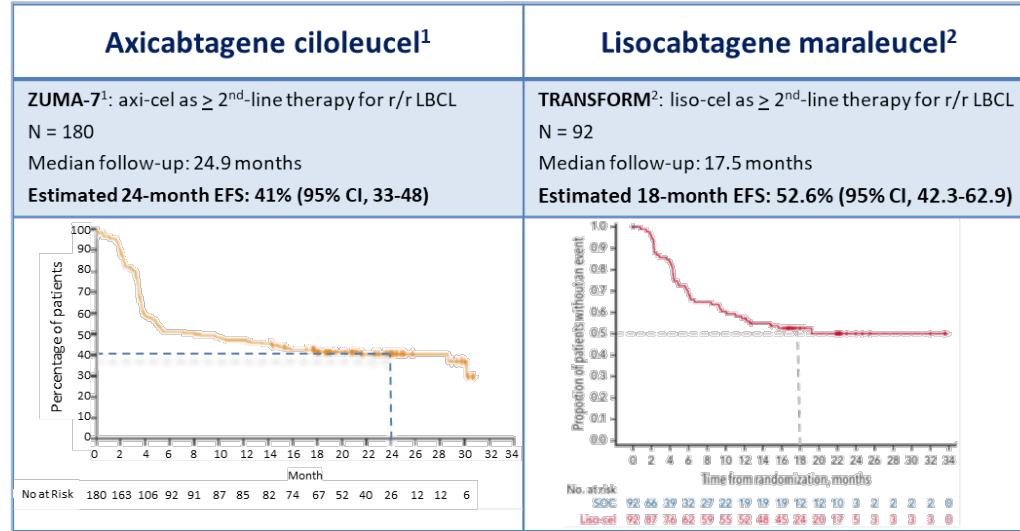
Professor of Medicine, Perelman School of Medicine
University of Pennsylvania, Philadelphia, PA, USA


MILANO, STARHOTELS ROSA GRAND
January 22-23, 2026

Disclosures of Stephen J. Schuster

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
AbbVie						X	
ADC Therapeutics						X	
AstraZeneca	X		X			X	
BeiGene						X	
BioNTech			X				
BMS	X					X	
Caribou Bio			X			X	
Genentech/Roche	X					X	
Genmab	X		X			X	
Incyte			X				
Janssen						X	
Novartis	X		X			X	
Vittoria Bio						X	

Large B-cell lymphomas: the remaining unmet need


~ 2/3 of patients fail to achieve durable responses with clinically available CAR-T products as 3rd-line therapy

Axicabtagene ciloleucel ¹	Tisagenlecleucel ²	Lisocabtagene maraleucel ³
<p>ZUMA-1¹: axi-cel as \geq 3rd-line therapy for LBCL N = 101</p> <p>Median follow-up: 63.1 months</p> <p>Estimated 5-year EFS: 30.3%</p> <p>Event-Free Survival (%)</p> <p>Median EFS (95% CI), months 5.7 (3.1-13.9)</p> <p>Months</p> <p>No at risk (censored)</p>	<p>JULIET²: tisa-cel as > 3rd-line therapy for LBCL N = 115</p> <p>Median follow-up: 40.3 months</p> <p>Estimated 40-month PFS:~30%</p> <p>Progression-Free Survival (%)</p> <p>Number at risk (number censored)</p> <p>Time from infusion (months)</p>	<p>TRANSCEND³: liso-cel as \geq 3rd-line therapy LBCL N = 256</p> <p>Median follow-up: 12.3 months</p> <p>Estimated 18-month PFS: 42.1%</p> <p>Proportion Free of Progression (%)</p> <p>Number at risk</p>

¹Neelapu SS, et al. Blood. 2023; Epub ahead of print; ²Schuster SJ, et al. Lancet Oncol 2021;22(10):1403-1415; ³Abramson J, et al. Lancet. 2020;396(10254):839-852.

Large B-cell lymphomas: the remaining unmet need

As 2nd-line, ~1/2 of patients have disease progression or need new lymphoma treatment by 2 years after available CAR-T products

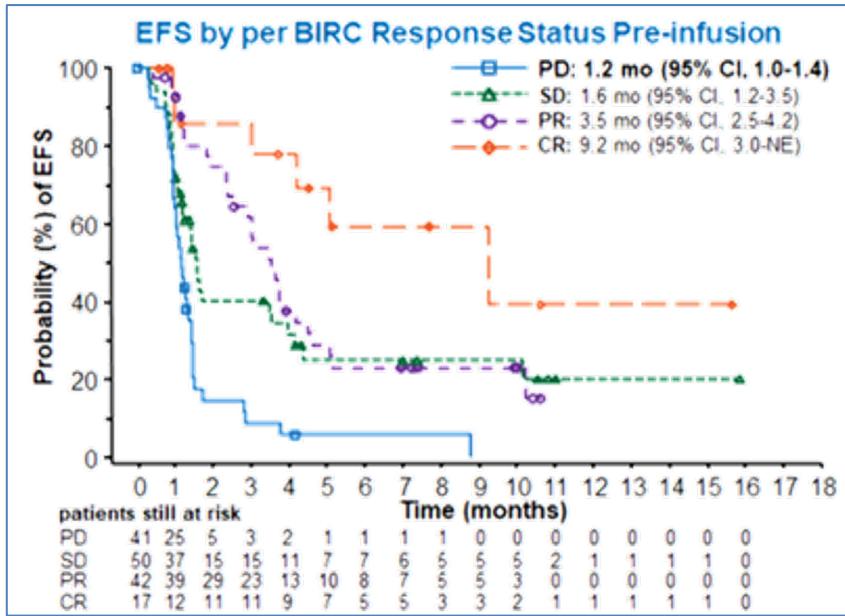
So, do we need a new car?

¹Locke FL, et al. N Engl J Med. 2022;386(7):640-654; ²Abramson, et al. Blood. 2023;141(14):1675-1684.

The question is,

“How can we improve these results?”

The easy answer is,


**“Treat patients who are likely to respond
and treat those destined to fail on clinical trials.”**

The next question is,

“So, how do we identify patients destined to fail CAR-T.”

Patient characteristics impact outcome: Disease Control

- Disease status at the time of CAR-T infusion impacts best response and EFS
 - Data from the BELINDA trial: tisagenlecleucel vs SOC

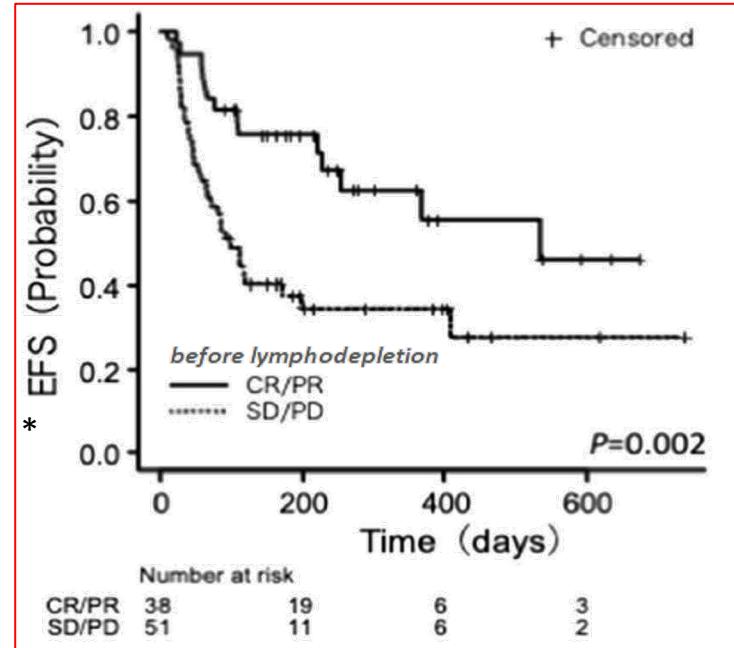
Multivariate Logistic Regression Model for Post-Infusion Best Overall Response (CR/PR vs SD/PD/UNK) in Arm A (second-line CAR-T)

Variable	Odds Ratio Estimates		
	Point Estimate	95% Wald Confidence Limits	
CR/PR before infusion vs. SD/PD before infusion at mean cell dose	7.75	3.23	18.62

The odds ratio is the odds of having a best overall response of CR/PR vs. SD/PD/UNK; i.e., an odds ratio >1 means patients are more likely to have a best overall response of CR/PR.

EFS time is relative to date of tisagenlecleucel infusion; median time from pre-infusion disease assessment to infusion was 10 days (range, 2-57; Q1-Q3, 8-15).

EFS events defined as PD/SD after day 71 from randomization or death at any time.


PD = progressive disease; SD = stable disease; PR = partial response; CR = complete response

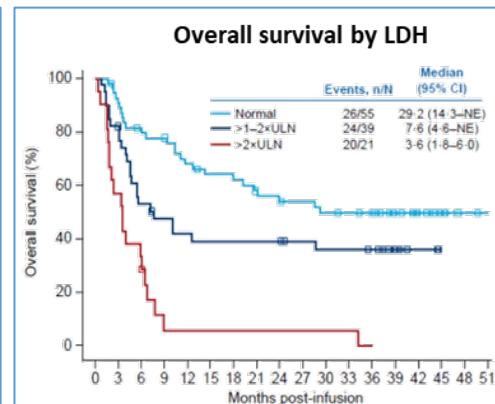
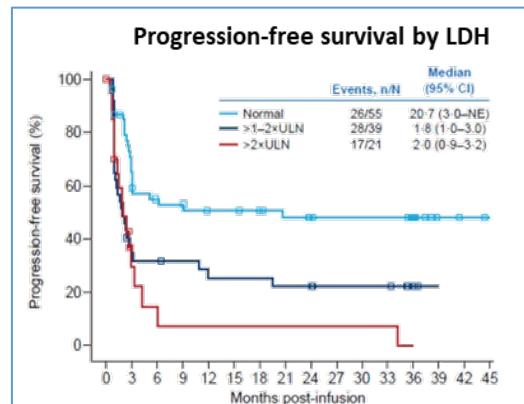
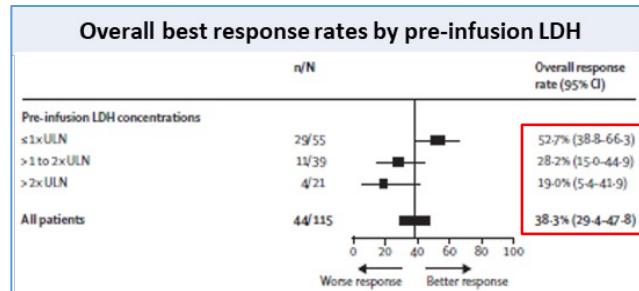
Bishop et al. N Engl J Med. 2021 Dec 14. Epub

Patient characteristics impact outcome: Disease Control

- Disease status at the time of CAR-T infusion impacts best response and EFS
 - Real-world data from Japan for tisagenlecleucel in r/r LBCL

Event-free survival after tisagenlecleucel by disease status after bridging therapy and before lymphodepletion

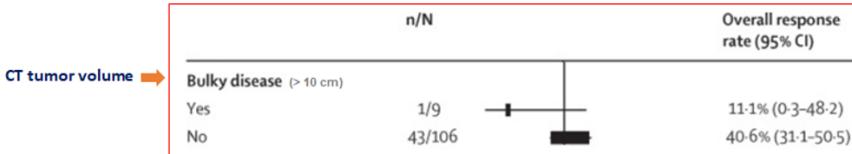
*EFS defined as the period from infusion to either progression or death

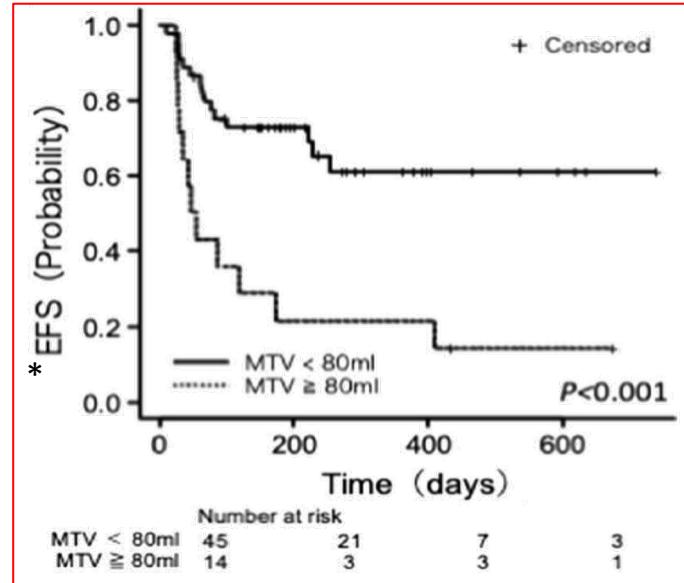



¹Goto H, et al. Int J Clin Oncol. 2023;28:816–826.

Patient characteristics impact outcome: Serum LDH

- Pre-infusion serum LDH impacts response to CAR-T and survival outcome
 - Data from the JULIET trial: Phase 2 trial of tisagenlecleucel in r/r LBCL

Multivariable analysis *		
Predictive Factors from Univariable Analysis	Responders/Patients	Odds Ratio (95% CI)
LDH		
≤ x ULN	29/55	2.74 (0.71-10.56)
>2 x ULN	4/21	
>1 - 2 x ULN	11/39	0.97 (0.23-4.06)
>2 x ULN	4/21	


*Lab analytes are defined as the closest time before or on the day of infusion (93% of values were obtained on the day of infusion)

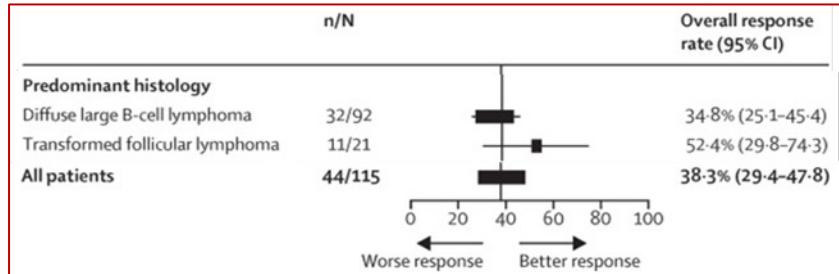

Schuster SJ, et al. Lancet Oncol. 2021;22(10):1403-1415.

Patient characteristics impact outcome: Tumor Volume

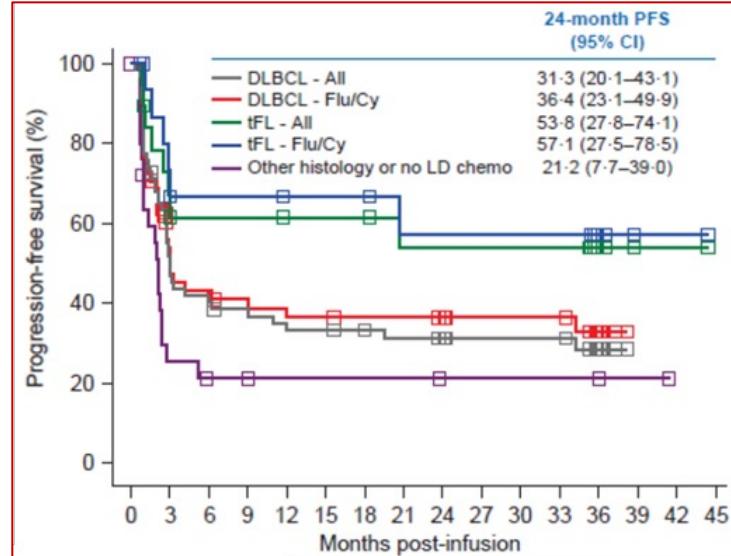
- Tumor bulk and its impact on response ("size matters")¹
 - Data from JULIET trial: Phase 2 trial of tisagenlecleucel in r/r LBCL

- MTV Data for tisagenlecleucel in r/r LBCL²
 - Real-world evidence from Japan

¹Schuster SJ, et al. Lancet Oncol. 2021;22(10):1403-1415.


MTV, metabolic tumor volume, EFS, event-free survival

²Goto H, et al. Int J Clin Oncol. 2023;28:816-826.

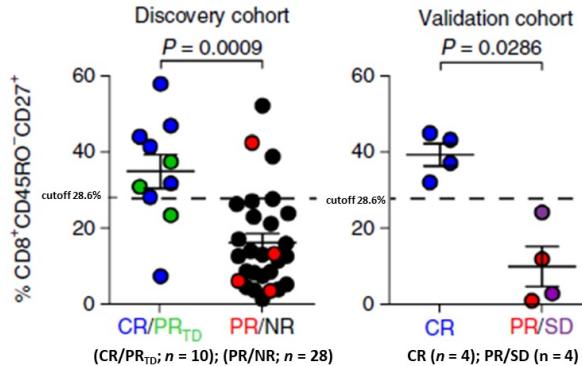

Patient characteristics impact outcome: LBCL Subtype

- Subtype of lymphoma impacts CAR-T response rates and progression-free survival
 - Data from the JULIET trial: Phase 2 trial of tisagenlecleucel in r/r LBCL

Overall response rates by lymphoma subtype

Progression-free survival by lymphoma subtype

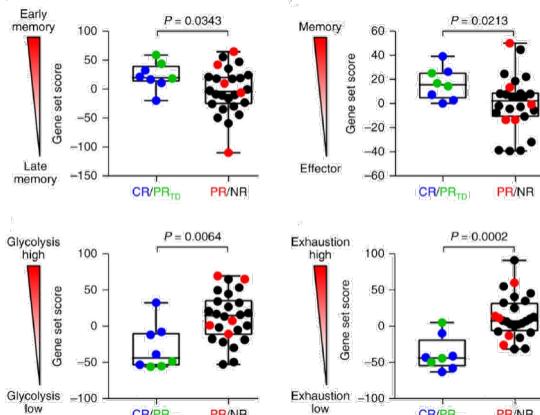
Schuster SJ, et al. Lancet Oncol. 2021;22(10):1403-141


Patient characteristics impact outcome: T cell fitness

T cell fitness refers to the functional capacity and metabolic vigor of T cells, reflected by their ability to effectively *recognize antigens, respond to co-stimulation, proliferate, produce cytokines, differentiate into effector cells, resist exhaustion, and provide immunologic memory*.

Patient characteristics impacting T cell fitness: Considerations

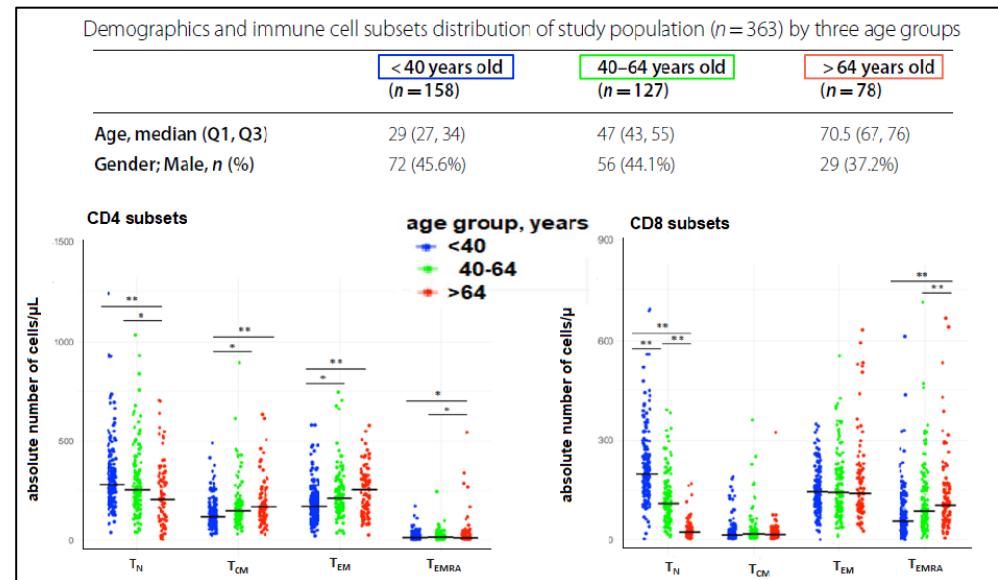
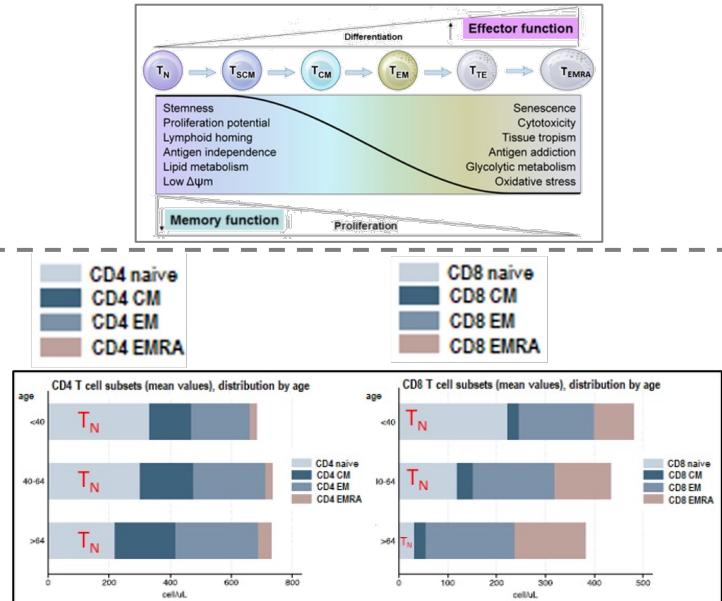
- Age-related immunosenescence
- Lymphoma-related immunosuppression
- Therapy-related (iatrogenic) immunosuppression


Naïve and memory CD8⁺ T cell content (CD45RO-CD27⁺ cells) in *leukapheresis material* contribute to response to CAR-T in CLL

Genomic evaluation of CLL patient-derived CAR-T cell products and response to CAR-T cells

Genes Significantly Up- or Down-regulated

Early memory T cell
Nonexhausted T cell
Naïve vs. activated T_H2 Cd4⁺ T cell
Unstimulated vs. stimulated memory T cell
Resting vs. bystander activated CD4⁺ T cell
Conventional vs. effector memory T cell
Multipotent vs. progenitor CD4⁺ T cell
Memory vs. effector CD8⁺ T cell
Exhausted vs. effector T cell
Exhausted T cell
Activated T_H2 vs. naïve CD4⁺ T cell
Stimulated vs. unstimulated memory T cell
Glycolysis
Hypoxia
Effector vs. memory CD8⁺ T cell
Apoptosis

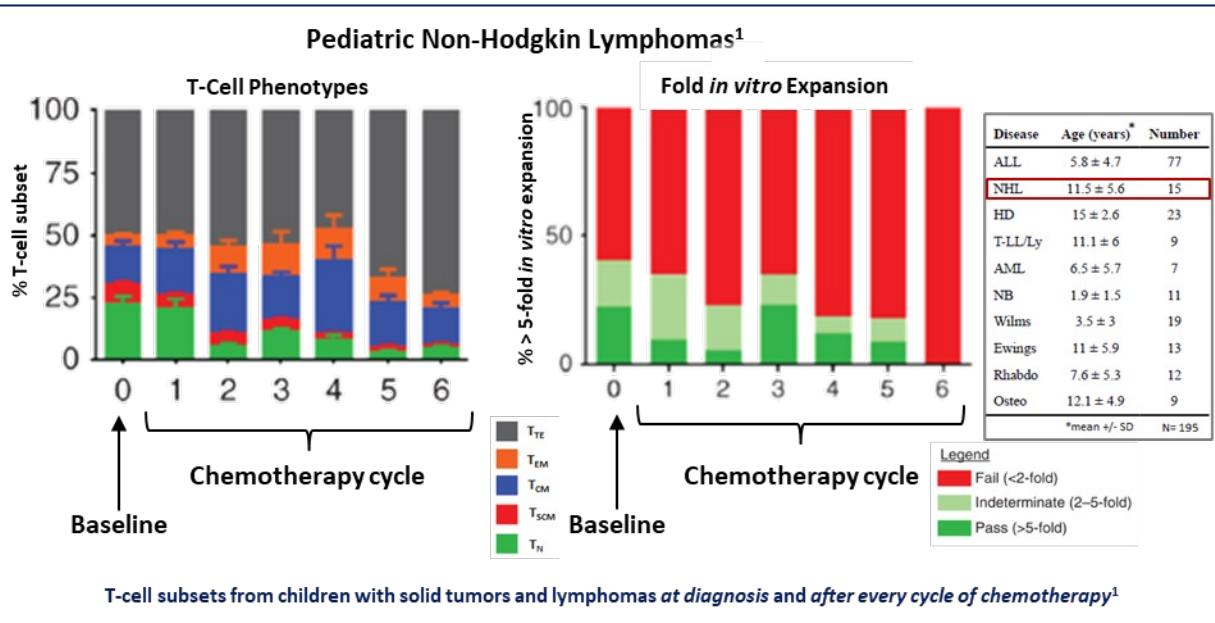



CR, complete remission; PR_{TD}, partial remission with late relapse of transformed disease; PR, partial response; NR, no response

Fraietta, et al. Nat Med 2018; 24:563–571.

Impact of Age-Related Immunosenescence on Naïve and Memory T Cells

- Study of healthy adults (n = 363) established *age-specific, immune cell reference ranges*; A systematic review and meta-analysis validated these findings (n = 7,425)¹



T_N, naïve T cells; T_{SCM}, T stem cell memory cells; T_{CM}, T central memory cells; T_{EM}, T effector memory cells; T_{TE}, T effector cells; T_{EMRA}, CD45RA⁺ terminal effector memory T cells

¹Chang, et al. Immunity & Ageing. 2024; 21:75

Pre-Existing Lymphoma- and Therapy-Related Immunodeficiency

- Naïve T-cell deficits *at diagnosis* and *after chemotherapy* may impair cell therapy potential

T_N , naive T cells; T_{SCM} , T stem cell memory cells; T_{CM} , T central memory cells; T_{EM} , T effector memory cells; T_{TE} , T effector cells; T_{EMRA} , CD45RA⁺ terminal effector memory T cells

¹Das, *et al.* Cancer Discov. 2019; 9(4):492-499.

²Shearer, *et al.* J Allergy Clin Immunol. 2003; 112(5):973-980.

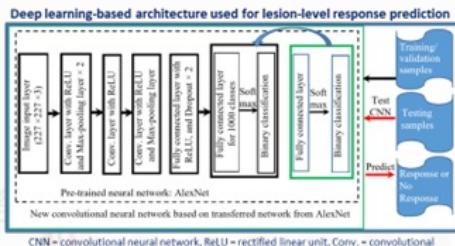
So, how can we more accurately predict CAR-T outcome?

Image adapted from: <https://fineartamerica.com/featured/hands-on-crystal-ball-allan-swart.html>

Deep Learning-Based Image Analysis: Radiomics

"Images are more than pictures, they are data." Gillies RJ, et al. Radiology (2016) 278 (2): 563-77.

Hypothesis:


- Radiologic images contain *image-agnostic features* beyond that used to reconstruct humanly recognizable anatomic and functional pictures

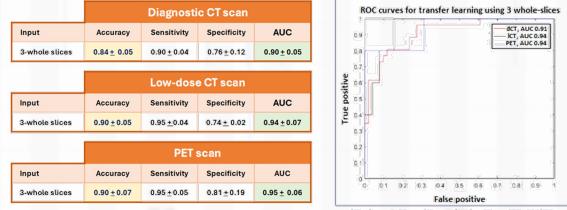
Objectives:

- 1) extract *image-agnostic features* (data) from PET/CT images that correlate with clinical outcome using machine learning
- 2) develop a computerized decision support system (program) by retraining a pre-trained neural network (AlexNet¹)
- 3) prospectively validate this program for predicting CAR-T outcome

Validation:

- Analyze *pre-treatment* PET/CT images using the retrained neural network to test prediction of CAR-T outcome with *investigators blinded to patients' outcomes*

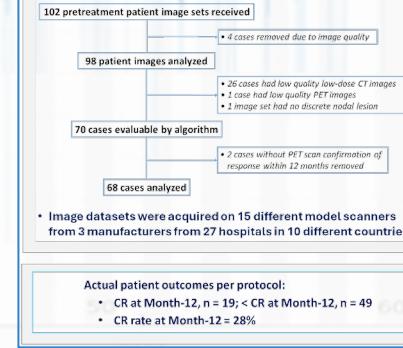
¹Tong Y, et al. PLoS ONE 2023;18(7):e0282573.


²Schuster S J, et al. ASH 2025 (poster)

Lesion Level Model

Training Set: Predicting Lesion-level Response from Pre-Treatment Imaging

Diagnostic performance of **lesion-Level** treatment response predictions for DLBCL cohort:


- Data shown for 3 imaging modalities using 3 whole-slice per input and transfer learning approach
- Median time from imaging to CAR-T infusion: diagnostic CT scan, 15 days (range 4-62 days)
low-dose CT + PET, 30 days (range 5-46 days)

*Sensitivity = correctly identifies lesions in complete remission at 12-months after CAR-T (*true positive rate*)

*Specificity = correctly identifies lesions not in remission at 12 months or at last follow-up if < 12 months (*true negative rate*)

Consort Diagram

Results

Predicting Outcome from Pretreatment Image Analysis + Pretreatment LDH

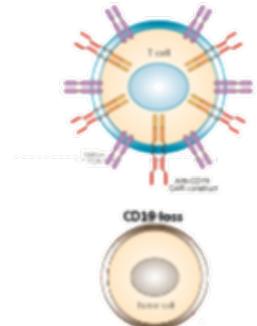
JULIET Cohort: Cumulative Sensitivity and Cumulative Specificity

Pretreatment Serum LDH > 2 x Upper Limit of Normal Predicts Failure (no CR by Month-12)		Sensitivity	Specificity	Balanced Accuracy*	Positive Predictive Value	Negative Predictive Value
Input: LDH > 2 x ULN n = 67 (cohort evaluated by image analysis)		15%	100%	63%	100%	75%

Deep Learning-Based Image Analysis Predicts Failure (no CR at Month-12) from Pretreatment PET/CT, ≥ 60% Rule

Input: PET + LD-CT, 3 slices each per lesion n = 68		Sensitivity	Specificity	Balanced Accuracy*	Positive Predictive Value	Negative Predictive Value
		49%	77%	63%	85%	37%

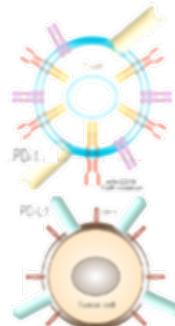
Parallel Analysis of Pretreatment DL-Image Analysis + Pretreatment LDH to Predict CAR-T Failure (no CR at Month-12) Cumulative Sensitivity and Cumulative Specificity


Input: DL-Image Analysis + LDH > 2 x ULN		Sensitivity_cumulative	Specificity_cumulative	Balanced Accuracy*	PPV_cumulative	NPV_cumulative
		57%	77%	67%	86%	41%

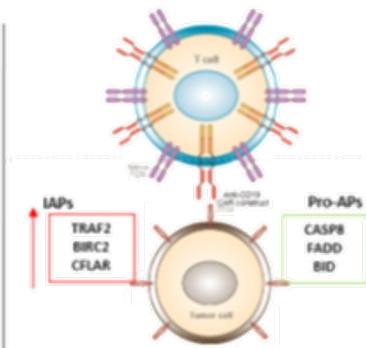
CR, complete response; LD-CT, low-dose CT; NPV, negative predictive value; PPV, Positive predictive value

*Balanced Accuracy = (sensitivity + specificity) / 2. Balanced accuracy reported because of imbalance between number of responders and non-responders in test group

Disease-specific determinants of CAR-T success or failure

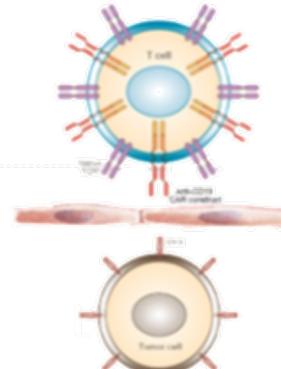

Some Mechanisms of Tumor Resistance to CAR-T Cells Targeting CD19 in B-Cell Lymphomas

CD19 antigen loss


- acquired mutations and alternative splicing of CD19

(Sotillo et al. Cancer Disc. 2015)

T-cell exhaustion/hypofunction


- mediated by inhibitory ligands on tumor cells and cells in the TME
- peripheral self-tolerance (B cell recovery? late relapses?)
- TME-induced T cell hypofunction (reversible)

Intrinsic tumor resistance

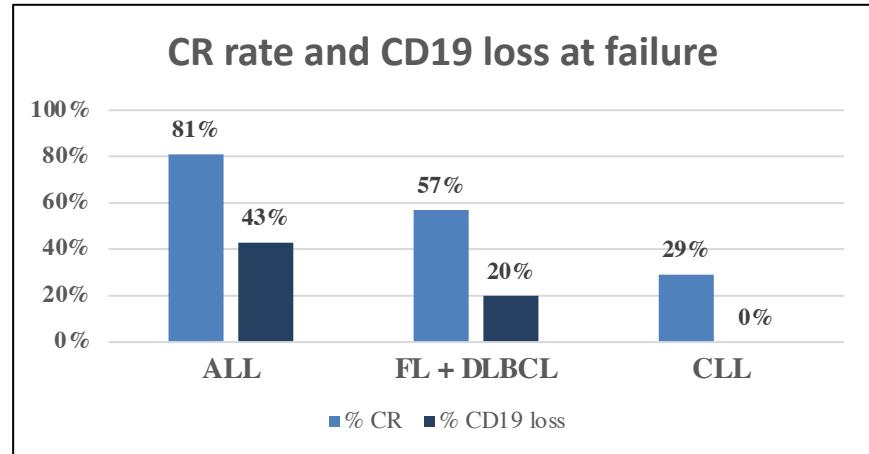
- loss of death receptor signaling molecules causes resistance to CAR T in vitro + in vivo
- failed CAR-T assoc./w lower death receptor-assoc. gene expression by tumor cells

(Singh, et al. Cancer Disc. 2020)

Insufficient T-cell infiltration

- T cells paralysis
- physiologic factors (high interstitial fluid pressure, hypoxia, pH)

Recently completed, active, and upcoming *investigator-initiated* clinical trials at UPenn addressing tumor-specific mechanisms of resistance


CD19 antigen loss	T-cell exhaustion/hypofunction	Intrinsic tumor resistance	Insufficient T-cell infiltration
<p>Phase II study of dual targeting of CD19 and CD20 antigens using CD19-CAR T cells and CD20-BsAb</p> <p>PI: E. Chong NCT04889716 • <i>active</i> • <i>recruiting</i></p>	<p>Interleukin-18 secreting anti-CD19 CAR T cells [hucART19-IL18 cells] PI: J. Svoboda NCT04684563 • <i>fully accrued</i></p> <p>KIR-CAR/Dap12-modified T cells Pre-clinical completed* *Wang, et al. Cancer Imm Res 2015;3:815 PI: S. Schuster NCT06544265 • <i>active</i> • <i>recruiting</i></p> <p>CD5 knockout CAR-T cells Pre-clinical completed* *Patel, et al. Sci Imm 2024;19:9(97):eadn6509 PI: S. Barta NCT06420089 • <i>active (for T-cell)</i> • <i>recruiting</i></p>	<p>Venetoclax-resistant CAR T overexpressing mutated BCL-2(F104L) [BCL-2(F104L)-CART19] Pre-clinical completed* * Lee, et al. Cancer Discov 2022;12:2372 PI: M. Ruella • <i>clinical trial planned</i></p>	<p><i>Under non-disclosure agreement</i></p>

Disease-specific determinants of CAR-T success or failure

CD19 antigen loss or downregulation

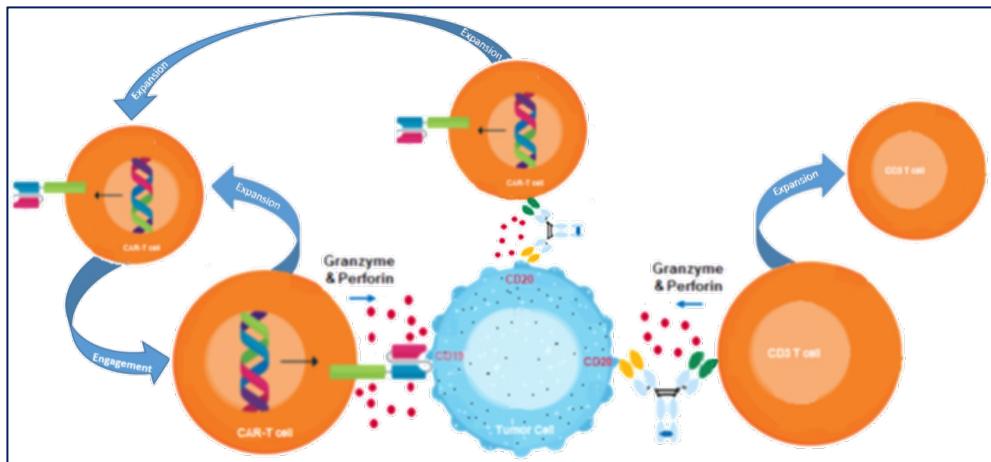
Early (prehistoric) CTL019 efficacy data from Penn and CHOP

Disease	N	CD19 loss at PD
ALL ¹	30	3/7
FL + DLBCL ²	28	1/5
CLL ³	14	0/10

- More responsive diseases seem more likely to fail due to CD19 loss
- Less responsive diseases, like CLL, require alternative explanations

¹Maude S, et al. NEJM. 2014; 371(16): 1507-1517; ²Schuster SJ, et al. N Engl J Med. 2017;377(26):2545-2554; ³Porter DL, personal communication 2018 Mar 12.

Disease-specific determinants of CAR-T success or failure


- Recruiting UPenn clinical trial addressing CD19 antigen loss or downregulation

Phase II Study of Dual Targeting of CD19 and CD20 Antigens Using Sequential CD19-directed 4-1BB-CD3ζ CAR-T Cells Followed by Mosunetuzumab or Golfitamab in Relapsed or Refractory DLBCL or Transformed FL

Rationale:

Early administration of CD20:CD3 bispecific antibodies (mosunetuzumab or golfitamab) after CD19-directed CAR-T cell therapy may enhance tumor cytotoxicity by:

- synergistic or additive B cell cytotoxicity via simultaneously targeting two different B cell (tumor) antigens, *i.e.*, CD19 and CD20
- reducing CD19-negative tumor cell escape by targeting a second B cell antigen
- enhancing *in vivo* expansion of CAR T cells, as observed for T cells in general, after bispecific T cell engaging antibody exposure

ClinicalTrials.gov Identifier: NCT04889716
Recruitment Status : Recruiting
First Posted : May 17, 2021
Study Type : Interventional (Clinical Trial)
Estimated Enrollment : 42 participants
Allocation: Non-Randomized
Intervention Model: Sequential Assignment
Actual Study Start Date : November 5, 2021
Estimated Primary Completion Date : December 31, 2023
Estimated Study Completion Date : December 31, 2025

PI: E. Chong

Disease-specific determinants of CAR-T success or failure

- UPenn clinical trial addressing T cell exhaustion

Phase I Trial of huCART19-IL18 Cells in Patients With Relapsed or Refractory CD19+ Cancers

THE NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Enhanced CAR T-Cell Therapy for Lymphoma after Previous Failure

Jakub Svoboda, M.D.,¹ et al.

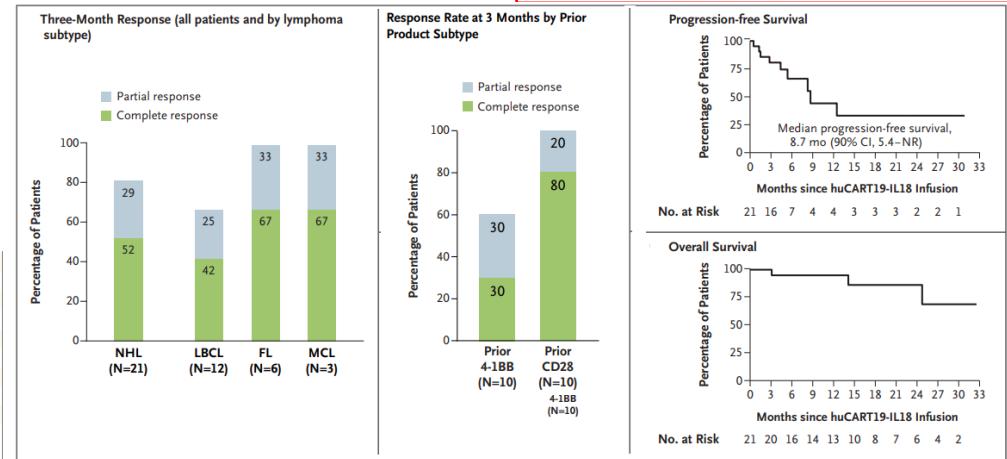
N Engl J Med 2025;392:1824-35.
DOI: 10.1056/NEJMoa2405771
Copyright © 2025 Massachusetts Medical Society.

Characteristic	Patients (N=21)
Median age (range) — yr	64 (47-74)
Male sex — no. (%)	16 (76)
ECOG performance-status score — no. (%) [†]	
0	2 (10)
1	19 (90)
Lymphoma subtype — no. (%)	
Large B-cell lymphoma	12 (57)
Diffuse large B-cell lymphoma, not otherwise specified	8 (38)
Transformed follicular lymphoma	2 (10)
High-grade B-cell lymphoma	1 (5)
T-cell histiocyte-rich large B-cell lymphoma	1 (5)
Follicular lymphoma	6 (29)
Mantle-cell lymphoma	3 (14)

Previous CAR therapy — no./total no. (%)	
CD28-based product	10/20 (50)
Axicabtagene ciloleucel	8/20 (40)
Brexucabtagene autoleucel	2/20 (10)
4-1BB-based product	10/20 (50)
Tisagenlecleucel	8/20 (40)
Lisocabtagene maraleucel	2/20 (10)
Response to previous therapy	
Progressive disease — no./total no. (%)	7/20 (35)
Median progression-free survival — mo (90% CI)	6.7 (3.1-10.2)

Rationale

to utilize IL-18 as a pro-inflammatory cytokine to:

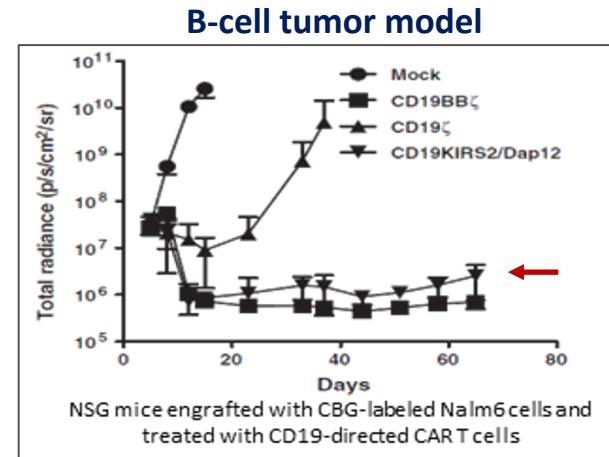
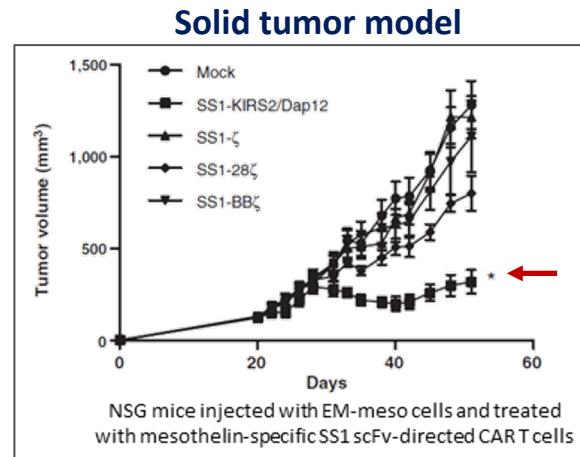
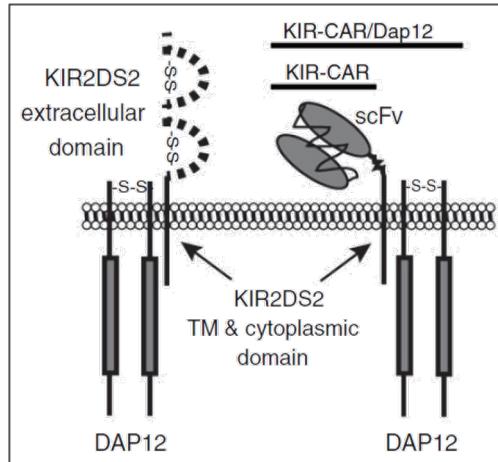

- enhance CAR T cell proliferation
- recruit additional immune cells into the TME to mediate antitumor effects toward CAR-T resistant tumor cells
- mitigate the potential impact of CAR T cell exhaustion

Results

N = 21 received huCART19-IL18

Median follow-up: 17.5 months (range 3 - 34)

- 3-months ORR: 81% (90%CI, 62-93)
- 3-months CRR: 52% (90% CI, 33-71)
- Median DOR: 9.6 months (90% CI, 5.5-NR)




PI: J. Svoboda

Disease-specific determinants of CAR-T success or failure

- Recruiting UPenn clinical trial addressing T cell exhaustion or hypofunction

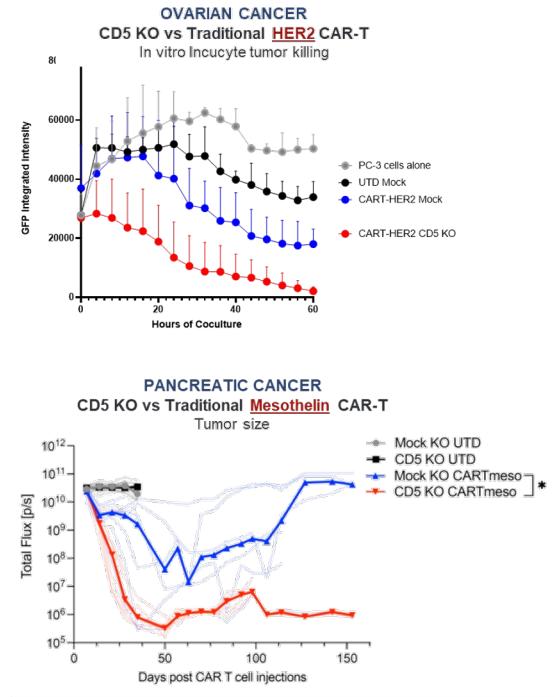
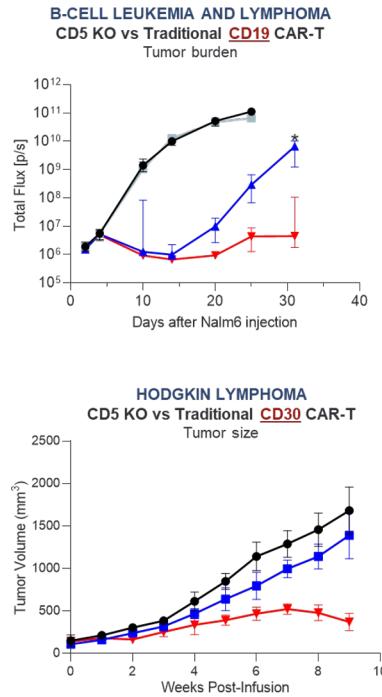
CD19-directed KIR-CAR/DAP12-modified cells for CD19+ lymphomas

Rationale: KIR-CAR/Dap12 expressing CAR T cells have potent *in vivo* antitumor activity that is resistant to the tumor- and/or TME-induced T-cell hypofunction observed with CD3 ζ -based CAR T cells. This potent activity *may* be of benefit in LBCLs with bulky disease.

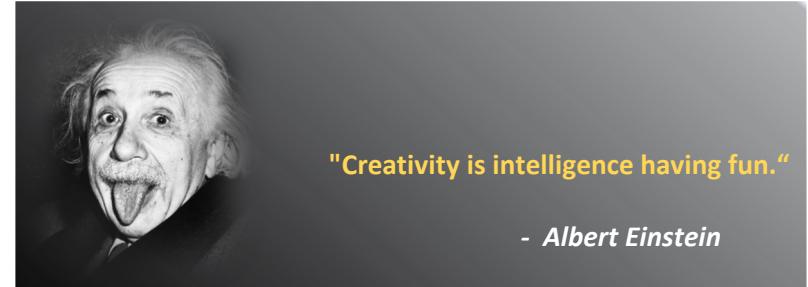


¹Moon, et al. Clin Cancer Res 2014;20:4262–73.

²Wang, et al. Cancer Imm Res 2015;3:815–826. (data show on the right)



Disease-specific determinants of CAR-T success or failure

CD5 KO CAR T cells can enhance efficacy in multiple liquid + solid tumor models


Ruella lab data

Patel RP, ASH, 2022 #662

Grazie / Thank You!

